Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

FUSS&O'NEILL

Village Creek Harbor & Estuary A Study on the Feasibility of Restoring Degraded Saltmarsh with Dredged Material

> **Public Presentation** September 7th and 9th 2017

Background/Historical Perspective Dredging History and Needs NFWF/ CIRCA Grant Objectives Existing & Historical Tidal Marsh Conditions Topographic & Bathymetric Survey Biobenchmarking (Vegetation Assessment) Sediment Quality: Marina v. Salt Marshes Sediment Repositioning Options Permitting **Questions & Answers**

FUSS & O'NEILL Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

AGENDA

Background/Historical Perspective Dredging History and Needs NFWF/ CIRCA Grant Objectives **Existing & Historical Tidal Marsh Conditions Topographic & Bathymetric Survey Biobenchmarking (Vegetation Assessment)** Sediment Quality: Marina v. Salt Marshes Sediment Repositioning Options Permitting **Questions & Answers**

FUSS&O'NEILL Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

AGENDA

Village Creek Community Harbor

 Small, pleasure boat harbor in Village Creek Estuary. • Established in 1957. Maintenance 1992, 1996, 2003, 2010, 2017. Funded by Village Creek Community Open to residents and non-residents Complete dock renovation in 2010 – Power, water, lights, 49 slips.

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

- dredging on the harbor and/or channel in 1969, 1984,

Harbor and Channel maintained by conventional dredging since 1957.

Village Creek is part of the Long Island Sound Dredge Management Plan (DMMP)

Maintenance dredging on the harbor and/or channel in: 1969, 1984, 1992, 1996, 2003, 2010, 2017

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Central Long Island Sound Disposal Site Long Island Sound Western Long Island Sound Disposal Site Long Island

Service Layer Credits: Sources: Esri, HERE, DeLorme, TomTorn, Intermap, Increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, survey, Esri Japan, METI, Esri China (Hong Kong), swisstopo, Mapmyindia, © OpenEtreetMap contributors, and the GIE User Community

We share the Sound with New York State

 In April 2016, NYS Conditionally concurred with the U.S. EPA approval of the continuation of open water disposal at WLIS and CLIS. • With the understanding that "A goal of the regulation was to reduce or eliminate open-water disposal of dredged material into Long Island Western Long Island Sound Disposal Site Sound".

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

New York State Opposes **Open Water Disposal in** Long Island Sound

On August 18th, New York State filed suit against the U.S. EPA to stop the approval of the Eastern Long Island Sound **Disposal Site. (ELDS)**

This lawsuit is in response to the April 2016 EPA approval of the LI Sound Dredged Materials Management Plan (DMMP)

This disposal site is similar to the Western Long Island Sound Site that serves Connecticut dredging projects at our end of the sound.

NYS and environmental groups claim that open-water disposal of dredging materials introduces contaminants, harms shellfish and reduces water quality in the Sound.

New York Files Suit Against USEPA Over ELDS Ruling

New York Files Suit Against USEPA

Congressman Courtney's Response is Strong

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

The Future of Dredging in Long Island Sound

• An agreement made in 2005 between the EPA, the Army Corps, and the states of Connecticut and New York was supposed to create a plan that would reduce and phase out open-water dumping sites.

"The proposed amendment was intended to support the overarching goal of reducing or eliminating open water disposal by establishing standards and procedures that will encourage practicable alternatives to open water disposal." Those standards and procedures include a permanent "dredging team" that would look for alternatives to dumping as each project comes up.
Alternatives like using the silt and sand to restore beaches or marshlands.

S&O'NEILL Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

From Recommendation to Investigation

• Permit discussions with CTDEEP offices in Sept 2015 Recommended Saltmarsh Restoration Previous effort on our part (2004) • Encouraged to investigate "local disposal" Sources of Funding: – NFWF - Long Island Sound Futures Fund **CIRCA - CT Institute for Resilience and Climate Adaptation** Norwalk Land Trust – Agreed to sponsor grant application Awarded NFWF and CIRCA Grant • Fuss and O'Neil chosen as an engineering contractor

FUSS&O'NEILL Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Sponsors and Supporters

Project Management • Nominal Grant Applicant - Norwalk Land Trust Contractor – Fuss & O'Neil, Manchester, CT • Josh Wilson – Project manager

Funding Fund •

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

• Principal Investigators – Village Creek Harbor Corporation

NFWF – National Fish and Wildlife Foundation – Long Island Sound Futures

 CIRCA – Connecticut Institute for Resilience and Climate Adaptation Matching funds provided by local business and community members

size and contaminants will be determined. target areas.

Project Objectives: "Village Creek Salt Marsh Restoration Demonstration"

- Preliminary Site Assessment An analysis of existing vegetation in the surrounding marsh compared to historical photos of the site.
- Topographic and Bathymetric Survey A topographic and bathymetric survey will be performed on the subject areas to determine the plant communities, the topography and likely areas for restoration.
- Sediment Characterization The characteristics of the sediment for particle
- Sediment Settling and Compaction Properties Conceptual modeling will be performed to determine area and volume calculations.
- **Design -** The design of a saltmarsh restoration approach for the proposed
- Site Monitoring Baseline A monitoring program baseline will be established to track the changes in the affected area.
 - Village Creek Harbor & Estuary Salt Marsh Restoration Feasibility Study

Background/Historical Perspective Dredging History and Needs NFWF/ CIRCA Grant Objectives Existing & Historical Tidal Marsh Conditions Topographic & Bathymetric Survey **Bio-benchmarking (Vegetation Assessment)** Sediment Quality: Marina v. Salt Marshes **Sediment Repositioning Options** Permitting

Questions & Answers

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

AGENDA

Sediment Repositioning Options

Western Long Island Sound Disposal Site **Opposition by NYS** Planned "phase out" **Salt Marsh Creation** Discouraged by DEEP in areas where salt marshes haven't existed (new) Would consider if historical salt marshes are documented as lost **Thin Layer Deposition** Economic and ecological beneficial re-use of material Presents unique "first-time" challenges

FUSS&O'NEILL Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Existing Conditions

First Student

B. Beinfield (280 Wilson Ave)

SoNo Ice House

Norwalk Land Trust (250 Wilson Ave)

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Crystal LLC (314 Wilson Ave)

Woodward Ave Park

Village Creek Harbor Marina

Existing v. Historical Conditions

2016 CT State-wide Imagery & 2017 UAV Imagery

FUSS & O'NEILL

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

1934 CT Areial Photos

Existing v. Historical Conditions

- Village Creek salt marsh exhibits typical conditions for a marsh located in a developed area:
 - S. alterniflora dominated
 - Mosquito ditches from 1930s
 - Limited high marsh vegetation communities (S. patens)
 - Development of *Phragmites* stands along disturbed edges
- Salt marsh showing signs of degradation including:
 - Extensive areas of stunted S. alterniflora on open marsh
 - Development of *Phragmites* stands along disturbed edges
 - Loss of peat density and erosion below the active root zone
 - Increased areas of mudflats (as exhibited by *S. alterniflora* islands)

FUSS & O'NEILL

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

2016 CT State-wide Imagery & 2017 UAV Imagery

Topographic & Bathymetric Survey

- Control established by traditional survey
- Unmanned Aerial Vehicle (UAV) [Drone]
- Sub-foot vertical accuracy
- ► +/- 32 acres in one day

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

ey]

Topographic & Bathymetric Survey

2017 UAV Imagery

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

2017 UAV Imagery – Derived DEM

Topographic & Bathymetric Survey

White = Low Elevation Black = High Elevation

and and

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

2017 UAV Imagery – Derived DEM

Bio-benchmarking & Sediment Sampling

75 150

Biobenchmark Terminus (staked)

Marsh Soil Sample Location

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

N

8-10

Biobenchmark Transect

- Identify dominant plant communities every 3 feet along each transect
- Evaluate marsh soil for ambient chemical (pollutant) quality and physical characteristics

Dredge Area Sample Location

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

ELEVATION (Feet, NAVD88)

FUSS&O'NEILL

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Vegetation Distribution by Elevation

Village Creek Salt Marsh, Norwalk, CT

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

- S. alterniflora (stunted)

- P. australis and Upland

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

FUSS&O'NEILL

Vegetation Distribution Relative to Sea Level Rise

(Intermediate Scenario by NOAA @ Bridgeport Harbor) Village Creek Salt Marsh, Norwalk, CT

sh	High Marsh										

S. alt (stunted)

D. spit

S. pat

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

25

Target Elevations Based on Vegetation

Village Creek Salt Marsh, Norwalk, CT

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Sediment Sampling & Analysis

					Up	per Village Creek Ti	ial Marsh	Norwalk Land Tru	ust (250 Wilson Ave)	Village Creek Harbor (Yacht Basin)	Outer Marina		nner Channel	Outer Cha	nnel	Inner Marina	
	ResDE	8C 10	DEC	VCS	D-01	VCSD-02	VCSD-06	VCSD-03	VCSD-04	VCSD-05	DR-S	18284 D	DR-S5S6S7S8	DR-S9S10	0511	DR-S3	Average
				699063017-01		699063017-02	699063017-06	699063017-03	699063017-04	699063017-05	Com	-5988	Comp-5989 Comp		.5990 Comp-5991		
Minary Brannetser						1											
Miscellaneous Parameters	NIE		NIE	63	0	6.03	6 90	7.05	6.88	7.70							
Total Organic Carbon (mg/kg)	3.00		NE	29 000 00		48,000,00	51,000,00	44 000 00	46.000.00	15000.00	45 100 00		33 300 00 32 000 00		00	15 300 00	
Particle Size Description	NE		NE	Fine Sanday		Fine Sandy	Fine Sandy	Fine Sandy	Fine Sandy	Fine Sandy	10,1	Silt		Silt Silt		Silt	
Matala (mar/lan)						The caucity	- inclosurary	This bailing	The banky	- inc cauciy							
Metals (mg/kg)	Ť												Ť.				
Silver		340		10,000		ND	2.0	ND	ND	ND		ND		NA		NA	NA
Arsenic		10		10		11.0	20.1	8.3	5.5	9.2		1.99		10.8		10.1	11.5
Barium		4,700	1	140,000		67.9	68.7	46.9	44.8	69.0		22.4		NA		NA	NA
Cadmium		34		1,000		ND	7.7	ND	ND	ND		ND		0.36		ND	ND
Chromium		100		100		95.8	141.0	53.5	41.2	67.5		17.5		49.3		46.0	49.3
Copper		2,500		76,000		NA	NA	NA	NA	NA		NA		113.0		94.9	108.0
Mercury Lead	400	20	1,000	610 ₁₇	7	0.43 271	0.81	0.43 24.1	ND 71.4	12.5 ND	- L 4	ND 3.3	35.8	0.27 35.9		0.19 26.8	0.19 36.7
Selenium	340	1	0,000	N)	ND	ND	ND	ND	ND	NA		NA NA			NA	
Zinc	20,000	0 6	1,000	N	٨	NA	NA	NA	NA	NA	1	34	111	111 114		111	117.5
Semivolatile Organic Compounds (ug/kg)																	
Acenaphthene	1,000,00	00 2,5	00,000	N)	ND	ND	ND	ND	ND	1	0	ND	9		ND	9.5
Anthracene	1,000,0	00 2,5	00,000	N)	ND	ND	ND	ND	ND		8	26	26 31		17	28
Benz(a)anthracene	1,000	7	7,800	N	2	ND	ND	ND	ND	ND	118		85	93		57	88
Benzo(a)pyrene	1,000	1	,000	N	0	ND	ND	ND	ND	ND	1	46	100	105		72	106
Benzo(b)fluoranthene	1,000	7	7,800	N	2	ND	ND	ND	ND	ND	226		152	152 151		109	160
Benzo(g,h,i)perylene	1,000,0	00 2,5	00,000	N)	ND	ND	ND	ND	ND	1	35	102	102 82		53	93
Benzo(k)fluoranthene	8,400	7	8,000	N	2	ND	ND	ND	ND	ND	9	7	50	77		44	67
Chrysene	8,400	7	8,000	ND		ND	ND	ND	ND	ND	2	08	137	1630		94	517
Dibenz(a,h)anthracene	1,000	1	1,000	N	ND		ND	ND	ND	ND	2	0	ND	13		ND	17
Fluoranthene	1,000,00	00 2,5	00,000	ND		ND	ND	ND	ND	ND	3	89	251	282		170	273
Fluorene	1,000,00	00 2,5	00,000	N	2	ND	ND	ND	ND	ND	1	6	12	17		7	13
Indeno(1,2,3-cd)pyrene	1,000	7	7,800	N	2	ND ND		ND	ND	ND	1	10	76	88		45	80
Phenanthrene	1,000,00	00 2,5	00,000	N	2	ND	ND	ND	ND	ND	D 126		93	105		44	92
Pyrene	1,000,0	00 2,5	00,000	N)	ND	ND	ND	ND	ND	347		233 259			166	251
CT ETPH (mg/kg)	500	2	2,500	N)	190	ND	ND	ND	ND	N	A	NA	NA		NA	
Polychlorinated Biphenyls (ug/kg)	1,000	1	0,000	N)	ND	ND	ND	ND	ND	N	D	ND	ND		ND	

Notes:

NE = No Established criteria

NA = Not Analyzed

ND = Not Detected

Bolded values exceed ResDEC

Bolded and highlighted values exceed ResDEC and IC DEC

- samples

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Summary of Sediment Sampling Results

Village Creek Tidal Marsh, Norwalk, CT July 2017

Elevated concentrations of metals in salt marsh soils. Concentrations consistent with Harbor

Low levels of PAHs in Harbor samples. Concentrations consistent with urban runoff

Concentrations of parameters at the NLT and Village Creek Harbor shoreline consistently lower

Repositioning of material from Harbor to salt marsh consistent with beneficial reuse and antidegradation policies. This would need approval from DEEP Remediation Division

Sediment Repositioning

Challenges Associated with Thin Layer Deposition

Innovation: This type of project, while understood by DEEP in concept, has never been permitted (approved) and constructed in the state. Several departments within DEEP would need to review and approve of this plan.

Regulatory Jurisdiction:Project will require permits from:
DEEP (former) Office of Long Island Sound
DEEP Remediation Division
U.S. Army Corps of Engineers
Norwalk Planning & Zoning Agency

Ownership:

Norwalk Planning & Zoning Agency Actual ownership of the salt marshes need to be established and coordination with abutting landowners will be required

FUSS&O'NEILL Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

September 7 & 9, 2017

28

Historical Salt Marsh Extents

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Historical v. Current Salt Marsh Extents

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

2017 Extent

1934 Extent

Salt Marsh Restoration/Creation Areas

- Identified 12 areas (A L) for restoration (preferred) and/or creation
- \succ Areas A, C, F, G, H & K
 - Offer +/- 17 acres for restoration
 - Sediment chemical and physical characteristics most similar to Harbor dredge material
- Areas E, J, L & I
 - Offer +/- 5 acres for creation
 - Sediment chemical and physical characteristics similar to Harbor dredge material
- Areas B & D
 - Offer +/- 8 acres for restoration or creation
 - Sediment chemical characteristics most dissimilar from to Harbor dredge material

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Salt Marsh Restoration/Creation Areas

- Identified 12 areas for restoration (preferred) or creation (A - L)
- Areas A, C, F, G, H & K have +/- 29,000 CY of volume to the "Mid" elevation or approximate 2040 Sea Level Rise elevation (4.97')
- Difficulty will be getting material from Harbor to salt marshes
- Conventional dredging will occur in 2017/2018 season. The next cycle of dredging would occur in 6 to 8 years (2024 to 2026). This next cycle is the project timeframe for conducting the proposed salt marsh restoration.

Dredge Area: Est. Volume = 15,000 CY per 5 years

Thin Layer Deposition Methodologies

Spray Application

- Larger volumes/areas
- Finer sediment
- Single process
- Common in South and Mid-Atlantic

FUSS&O'NEILL

Mechanical Spread Application

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Thin Layer Deposition Results (Post-Construction)

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

Thin Layer Deposition Results (Year 1)

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

We would like to acknowledge contributions from Norwalk residents and business owners.

FUSS&O'NEILL

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

LAND TRUST

AIRSHARK

f FUSS & O'NEILL Village Creek H

QUESTION & COMMENTS

Village Creek Harbor & Estuary – Salt Marsh Restoration Feasibility Study

